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The search for a statistical stability criterion characterizing steady-state turbulent 
shear flows has led us to the study of a function proportional to the ratio of the 
fluctuation dissipation rate and the dissipation rate of the mean. The first 
Euler-Lagrange equations for an upper bound of this function have optimal 
solutions with the observed scaling laws and an asymptotic velocity defect for 
turbulent channel flow. As in the case of maximum transport, the optimal solution 
for the model equations is a discrete spectrum of streamwise vortices. It is shown how 
these solutions can be brought closer to the realized flow with additional constraints 
on the smallest vortex. 

1. Introduction 
The central purpose of this study is to seek functions whose upper bounds scale 

correctly and lie close enough to observed means that the optimizing vector fields 
reflect the principal physics of the realized fluid motions. Past work on the upper- 
bound approach to turbulent flow has been restricted to the search for limits on the 
transport of heat, mass or momentum. Here, analytic and numerical procedures are 
developed to explore bounds on any moment or product of moments of the mean 
flow. 

The development of formal upper-bound theory is due to Howard (1963) in his 
study of the heat transported by turbulent convection. The approach taken is to seek 
an extreme of some averaged flow property from a set of vector fields satisfying 
boundary conditions, continuity conditions and conditions imposed by ‘energy ’ 
integrals of the complete equations describing the flow. Since the realized solutions 
are contained in the set of fields considered, the deduced extreme will be a 
quantitative bound on actual measurements. In principle this bound can be brought 
closer and closer to the observed value by imposing additional derived constraints. 
The vector fields found as solutions of the Euler-Lagrange equations for these 
extremes represent a complete mechanistic idealization, determining not only the 
bound which has been sought, but all statistical properties of the model flow. If the 
flow property studied has an extreme close to the observations for all Reynolds 
numbers, then it is likely that many other statistical properties of the optimizing 
vector fields will also be adjacent to the realized flow. 

Upper-bound theory can be thought of as an ‘ opener ’, since more vector fields are 
admitted for consideration than those which are solutions of the Navier-Stokes 
equations. The theory emphasizes the order in turbulent flow, not the disorder. 
However, order and disorder appear to play roughly equal roles in most flows. Many 
other studies of turbulent statistics are based on ‘closures ’, which are plausible 
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truncations of deduced relations between statistical properties of the flow. Many 
closures emphasize the disordered aspects of turbulence. Recent work using a 
modification of Kraichnan's (1959) ' direct-interaction approximation ' closure in an 
application to shear flow (Yakhot & Orszag 1986) will be discussed in the conclusion. 

The plan of this paper is to present certain analytically accessible bounds on mean 
flow properties in the following section. The work of Howard (1972) is briefly 
reviewed and extended to dissipation rate functions suggested by recent studies of 
statistical stability (Ierley & Malkus 1988). 

A third section describes the multiscale structure of the optimum solutions first 
found by Busse (1969). That work permits the determination of a critical boundary 
Reynolds number associated with the Busse-Howard smallest scale of motion. 
Utilizing this smallest scale, a simplified upper-bound problem is outlined, which 
relaxes the viscous constraints on all but the boundary scale of motion and focuses 
on the stability of the mean flow. 

In  $4, the Euler-Lagrange equations for maximum momentum transport in the 
simplified upper-bound problem are formulated, solved numerically, and as 
anticipated shown to be even less constrained than the earlier Busse (1978) results. 

Section 5 describes numerical and analytic results for bounds on other functions of 
the dissipation rate integral. 

In  $6, solutions are found for extreme properties of a unique integral, discovered 
during this work and defined here as the efficiency function. I ts  asymptotic velocity 
defect and logarithmic region have the scaling found in experiments. The quantitative 
error appears to be attributable to insufficient constraint in determining the critical 
Reynolds number of the smallest scale. 

Section 7 introduces additional constraints, but only for the smallest scale. A first 
use of these constraints leads to a cross-stream vortex wave as the preferred mode. A 
second step explores numerically the stability boundary of vortex waves to three- 
dimensional inertial instabilities (Bayly, Orszag & Herbert 1988). The resulting 
critical Reynolds number for the boundary is an order of magnitude larger than the 
Buss-Howard value. In consequence the quantitative upper-bound prediction for 
the m-ean field for turbulent Poiseuille flow is within 25% of the observations a t  all 
Reynolds numbers above 5000. 

In  the concluding $8 possible formal links between the ordered vector fields of 
upper-bound theory and disordered fields of dynamic system and closure theories are 
explored. It is proposed that the upper-bound fields be treated as zeroth-order mean 
fields, upon which dynamical or statistical perturbative methods can lead to 
intermittency and decorrelation. Finally the generalizability of the eficiency- 
function bound is questioned. Its formal relation to the statistical stability of 
shearing flow has yet to be established. 

2. Bounds on properties of the mean flow 
2.1. The search for a statistical stability criterion 

Nonlinear perturbation theory near points of instability leads to the conclusion that, 
with occasional hysteresis, solution degeneracy is removed in favour of the solution 
of maximum transport. Both for this and for pragmatic reasons the only bound on 
fully turbulent flow that has been explored in past literature is that of extreme 
transport. However, many other integral properties of the flow related to transport 
are also maximum in the small-amplitude limit where this stability criterion is 
correct. Here, in a broadened search for an asymptotic statistical stability criterion, 
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we investigate classes of mean field moments which correspond to maximum 
transport a t  the point of instability, but can have quite different parametric 
behaviour a t  large Reynolds numbers. 

In Ierley & Malkus (1988) the stability conditions for two-dimensional and three- 
dimensional disturbances were assessed by largely numerical methods for a model 
turbuknt shear flow. Two observations in that work relevant to this paper were that 
an 'energy' method led to a critical value for a boundary Reynolds number close to 
the observed value; and that an extreme of the ratio of fluctuation and mean 
dissipation rates was also close to that of the observed flow. Both of those findings 
provide guidance in the following. 

2.2. Formal bound theory 
Howard's work on upper bounds did not direct attention to statistical stability. 
Stress was placed on the formal correctness of the bound itself. Howard's approach 
will be generalized in this section for an exploration of the parameter dependence of 
bounds on a variety of mean field moments. This approach provides an overview 
which will be exploited in following sections. For simplicity of description, the plane 
Couette flow case, treated in Howard's (1972) review article, is studied in this first 
section. The incompressible Navier-Stokes equations are written 

(2.1) 
a u  
at 
- + v .  VV+VP = R-lV'u, V .  u = 0, 

where the Reynolds number R is based on the boundary velocity and on the half- 
interval, with boundary conditions v = Ti on z = * 1 .  For statistically steady flow, 
an average over a plane a t  constant z of (2.1) leads to 

UW+R-~P = r,,, (2.2) 

where ro is the constant stress per unit mass, the overbar represents the average over 
a plane, uw is the Reynolds stress and p = (-aii. f j l a z  is the negative mean velocity 
gradient. A bracket ( ) will indicate an average over the entire flow, here (p )  = 1.  
Equation (2.2), the boundary conditions, and the fluctuation 'energy ' integral are the 
only constraints used to determine a first upper bound on the turbulent momentum 
transport. This integral is found by multiplying (2.1) by u = u - i i  and integrating 
over the fluid. Hence, in the statistically steady state, 

( m p )  = R-'(lVu12), (2.3) 

properly called the fluctuation dissipation rate integral. Then using (2.2) Howard 
eliminates p from (2.3) and writes 

(uw)-R((TEB- ( u w ) ) ~ )  = R-'(IVu12). (2.4) 

(2.5) 

(2.6) 

However, the total energy dissipation rate is proportional to 

Hence 
F = rOR = (lVuI2) = ( l V ~ 1 ~ ) + ( , 8 ~ ) .  

F = 1 +R'<(UW-(UW))')+(IVU~~) = 1 +R(ww) 

and from these equations Howard constructs the homogeneous functional 

( u w ) ~ - R - ' ( ~ V U ~ ~ )  ( U W )  
F = l +  

((UW- (uw) )2 )  

An upper bound on F determines a maximum stress as a function of R. 

(2.7) 
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To find an estimate from above this extreme, Howard proved that, with the 
constraint of boundary conditions, 

Then, from (2.7) and (2.8) he concludes that 

1 < F < 1 + 2R. (2.9) 

The observed value of F is much smaller, yet the observed asymptotic dependence 
of F on R differs only by the logarithm of R. 

2.3. Other bounds; the H function 
To  generalize Howard's work to other moments of the mean flow requires a method 
for the construction of homogeneous functionals for these other moments. A 
dissection of Howard's approach suggests rewriting (2.4) as 

(2.10) 

where H is an inhomogeneous identity, of order two in the fluctuating velocities. 
Then any moment can be written in homogeneous form using H. For example, 
Howard's functional for momentum transport emerges if one writes 

For a moment of mixed order, such as (puW), one writes 

(puW) = (UW) H-' -R((WJ-(W))~)  H-2 

- R-2(IV~(2)  ((m) -R-'(IVu12)) - 
<(m- (@@j>)2> 

Similarly, one finds that 

(2.11) 

(2.12) 

(2.13) 

A principal virtue of the homogeneous form is the freedom from an amplitude 
constraint and the consequent simplification of the functional one seeks to optimize. 
For example, one may define 

R(puw) - R-'(IVUI~) ((uw) -R-'(IVu12)) - 
(p2)  ((UW-(UW))~)+((UW)-R-'(IVU(~))~' 

then (2.13) is written 

R < m )  - - r(1-r) 
(p") ( (1  - f (4)2)  + (1 -rI2 = I .  

Using Howard's estimate from above, ( 2 . Q  rewritten as 

(2.14) 
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one finds an upper bound at high R for the ratio of fluctuating and mean dissipation 
rates, I in (2 .14) ,  to be less than ( 4 3 / 2 ) & .  In  realized flows, I increases only as 
InR. Hence I alone is a poor candidate in this search. 

More relevant examples are upper bounds on 7: I ,  where n is any number. This 
function reflects both the low-amplitude preference for maximum 70 and the 
numerical suggestion that I has a local maximum near the observed flow. From (2 .5) ,  
(2.8), (2.11) and (2.14) one sees that 

(2.15) 

Although determining the numerical coefficients for maximum 7: I(7) requires 
tedious computation, it is easily established that the maximum varies as Rt( 1 - n) for 
n < 1 ,  and varies as Ro for n > 1. Hence, among the functions of (2.15), r0I is that 
special function whose maximum is marginally influenced by the dissipation rate 
ratio, I. The implications of this rough parametric bound will be quantitatively 
assessed in $6. 

Additional constraints on the class of vector fields permitted in the optimization 
can improve these bounds. Yet, it has been found that the constraint of continuity 
does not alter the asymptotic dependence on Reynolds number. The rich structure 
of optimizing solutions resulting from the constraint of continuity are discussed in 
the following section. 

3. The smallest scale of motion 
3.1. Euler-Lagrange equations for Poiseuille channel flow 

The first integral of the equations of motion for Poiseuille flow may be written 

where, as in the Couette case, the boundaries of the channel are chosen to be z = & 1,  
and r0 is the magnitude of the stress a t  the boundary. However, the Reynolds 
number R is defined using the mean velocity and the half-interval. Here, and in all 
sections to follow, velocity components are scaled with the 'friction velocity', U,. In  
the customary notation, the mean velocity so scaled is written U+(z). 

The total dissipation rate, from (3 .1) ,  is proportional to 

Also, from (3 .1) ,  (ZW) +RRY2 = $, (3 .3)  

while (3 .4)  

is defined as the momentum transport Nusselt number. It was this quantity which 
was maximized, for R fixed, in previous upper-bound studies of Poiseuille flow. 

Variational optimization of (3.41, subject to the constraint of the fluctuation 
dissipation rate integral, to the condition that v = 0 on the boundaries and that 
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V - v = 0, leads to the following Euler-Lagrange equations for the components 
u, v, w of v and an effective pressure $ : 

0 = --+V’v, 
a$ aY I (3.5) 

w[az+buw] = --+V~U, 
ax I 

v * v = o ,  I 
where a and b are (constant) functions of integrals of the motion and of R. All 
functions of the mean flow, whose qualitative bounds were discussed in 0 1,  have 
Euler-Lagrange equations identical in form to (3.5), differing only in the explicit 
integrals which enter into a and b. 

A first observation concerning (3.5) is that  i t  is separable in the (2, y)-plane, for the 
nonlinear term uw is a function of z only. 

Busse’s (1969) fascinating addition to Howard’s (1963) paper was the discovery 
that the optimizing solution consisted of many downstream vortices of increasing 
wavenumber a,, up to some maximum a,(R). Smaller-scale vortices are nested 
inside the next larger vortex, the very smallest vortex defining a boundary layer for 
the optimum flow. Utilizing Howard’s earlier calculation, Busse determined that the 
effective boundary-layer thickness was z+ = 6.30, where the customary boundary 
coordinate Z+ = ( 1  + z )  R, is used near the z = - 1 boundary. This thickness is smaller 
than the observed value by a factor of three, presumably because the optimum 
vector field is a more efficient transporter of momentum than the realized turbulent 
flow. However, Busse showed that there was good qualitative agreement between the 
spatial variation of the r.m.s. values of the fluctuating optimum field and 
observations near the boundary. 

Far from the boundary, both qualitative and quantitative features of the N upper- 
bound solution fail to agree with observation. The optimum solution has no 
logarithmic region and no velocity defect ‘law ’ a t  all. It will be found that solutions 
for upper bounds other than N do have internal features, but only those of ra I, of 
(2.15), appears to scale as do the observations. 

Busse found the upper bounds for N analytically, but with a boundary-layer 
approach in which he wrote of the need for computational assistance to resolve 
aspects of the problem. Upper-bound solutions for the functions of $2.3 will have 
similar nested vortex solutions, and even more difficult integral constraints. Hence, 
to make possible a first exploration of a number of other extreme fields, a simplified 
problem is sought, bounding these bounds from above. Having discovered a property 
of the flow, whose bound exhibits observed scaling and observed qualitative features, 
one can return to the complete dynamic model given by the appropriate 
Euler-Lagrange equations. 

3.2. A less constrained upper-bound problem 
The approach taken here is to study first the extreme structure of the mean field 
alone. This is implemented in two steps. First an additional local stability constraint 
compatible with Busse’s extreme solution is imposed on the mean flow. Secondly, the 
dissipation rate integral constraint is applied only to the smallest scale of motion, all 
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larger scales being free (inviscid) to reach an optimum amplitude. Hence, a 
determination of maximum transport in this simplified problem will bound Busse’s 
results from above. 

The local stability constraint for inviscid parallel flow of one sign is the Rayleigh 
criterion that the curvature of the flow be everywhere of the same sign. Arnol’d 
( 1965) has extended Rayleigh’s results to include finite-amplitude two-dimensional 
as well as infinitesimal disturbances. Hence the Arnol’d-Rayleigh condition should 
be met by the finite-amplitude two-dimensional extreme solutions of the Euler- 
Lagrange equations (3.5). Both the observations and Busse’s optimal N solutions 
exhibit no inflexions in the mean flow. However, the dissipation rate integral does 
not capture the physics of the Rayleigh criterion, which has its origin in vorticity 
constraints. Hence, the inflexional constraint should be retained in the determination 
of optimal solutions of the Euler-Lagrange equations (3.5) for functions other than 
N .  The occurrence of local travelling inflexions is discussed in $7 ,  where vorticity 
constraints on the smallest scale of motion are considered. 

The formal upper-bound problem to be addressed in the following three sections 
is as follows: 

( a )  A critical boundary Reynolds number for a smallest scale of motion, k, is 
determined by the dissipation rate integral. As a first estimate, the Busse-Howard 
determination of a boundary Reynolds number for stability is used. A new 
determination is made in $7 .  

( b )  The curvature of the mean flow is required to remain of one sign by using the 

Fej& representation k0 

a22 0 
a2u+ - I*I, I zI,eik$, (3.6) 

where 9 = ( 1  + z )  7t, and I* indicates the complex conjugate. 
(c) The constraints imposed on the I, by the boundary conditions v = 0, and 

continuity conditions V - v = 0 are determined. 
( d )  Subject to these constraints, various functionals (e.g N ,  (m> I )  are optimized 

and the resulting mean fields are determined and exhibited. 
Numerical methods are particularly straightforward and complete for values of 

Ic, < lo2. Asymptotic analytic methods are checked with numerical methods for 
lo2 < k, < lo3, and used for higher k,. 

4. The Euler-Lagrange equations and mean flow for maximum Nusselt 
number 

4.1. The conditions on I ,  and k, 
Within the context of the problem posed at the end of $3, an upper bound is sought 
for the Nusselt number as a function of the Reynolds number. It was shown in 52.2 
that the bound of maximum Nusselt number is equivalent to both maximum 
momentum transport and maximum total dissipation rate as functions of the 
Reynolds number. It is also equivalent to minimum Reynolds number as a function 
of the total stress. The minimum Reynolds number formulation is particularly suited 
to a wavenumber expansion for the mean and therefore presented here. When 
discussing this bound we shall often refer to the equivalent maxima. 

In  this section expressions are derived for the Reynolds number and the boundary 
condition constraints in terms of the I,. It is also shown that the stability constraint 
on the smallest scale relates the stress to k,, allowing minimization of the Reynolds 
number as a function of k,. 
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First, d2a. i/dz2 = d2U+(z)/dz2 is expressed using the Fej6r series, 

Note that the Ik  are real for a symmetric profile U+ (Malkus 1979). Next the 
boundary conditions on U+ are determined from (3.1) through the boundary 
conditions on u and uw as 

- + R ,  at z = T 1 .  
dU+ 

- R T ,  -- -- -u+=o, -- d3U+ d2 U+ 
dz3 dz2 dz 

The third-derivative conditions are identically satisfied by the Fej6r representation 
while the second-derivative conditions impose a constraint on the Ik.  The first- 
derivative conditions applied to the first integral of the series give a constraint on the e. The two constraints are 

kQ k0 

X I k  = Rb, XI: = R,. (4.3) 
0 0 

Finally, an average over the whole domain of the second integral of (4.1) together 
with the boundary conditions on U+ leads to 

(4 .4 )  

In the laminar boundary layer the velocity varies linearly with the distance from 
the wall, U+ = z+ EE R, 6. That distance 8, and velocity U, which characterize the end 
of the boundary layer define a critical boundary Reynolds number R, = U,6,/ 
v = (z:)~. The Busse-Howard effective boundary-layer thickness z l  = 6.3, determined 
from the dissipation rate integral, is used as a first approximation. A bound from 
below for R,, based on additional constraints, is determined here in $7. Plots of the 
extremalizing mean profiles show that the boundary layer extends two full 
wavelengths A, = 2n/k0  into the flow. That is, z l  = 4 / k o .  Rewritten in terms of k,, the 
constraint on the smallest scale is 

(4.5) 

where equality is presumed by absorbing any dependence of R, on the outer flow into 
the later determination of R,. One may now look for the minimum Reynolds number 
as a function of k,. 

4.2. The Euler-Lagrange equations 
The Lagrangian for minimum Reynolds number subject to the constraints (4.3), (4.5) 
is 
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where A,, A, are Lagrange multipliers. Variation of (4.6) gives the Euler-Lagrange 
eauations. 

- (4.7) 

together with (4.3). These are k, + 3 equations for {Ik : k = 0, k,}, A,, A,. 

First, the solutions respect the kymrnetr-y 
The degree of this system of algebraic equations can be reduced by a factor of two. 

= Ib0-k. (4.8) 

Second, A, can be eliminated by subtracting pairs of equations. Finally one solves 

together with (4.3) for {Ik: k = 0, [ik,]} and A,. Here [ik,J means the largest integer 
smaller than or equal to ik,. 

The Euler-Lagrange equations for minimum Reynolds number (maximum Nusselt 
number) are particularly simple because they are linear in the I,. A difference- 
equation approximation for large k, suggests that the Ik spectrum has the form of a 
cosine function sufficiently far from the endpoints I, and Iko. Although the exact 
solution for the spectrum can probably be resolved analytically we choose a 
numerical representation for comparison with the results for other moments. 
Optimization of higher moments of the mean leads to nonlinear Euler-Lagrange 
equations that must be solved numerically. In $4.3 the numerical solution is shown 
to approach a cosine at high k,. 

4.3. The optimal solution 

The Euler-Lagrange equations (4.9), (4.3) are solved using Newton's method. The 
2[tko] solutions occur in pairs, the lk spectra of each pair characterized by the number 
of times a continuous k-like variable g is equal to zero. For example, y = 0 two times 
in the spectra corresponding to the two lowest Reynolds numbers and 2[ik,j times in 
the spectra corresponding to the two highest Reynolds numbers (figure 1 a) .  The two 
spectra in each pair are out of phase by roughly 7c (figure 1 b ) .  

Figure 2 shows the mean velocity profiles of the twenty solutions for k, = 20. The 
area under each curve is proportional to the Reynolds number. The plots span the 
full channel to emphasize the fact that the entire structure of the mean profile is 
predicted. The profiles are symmetric about the maximum value, which occurs a t  the 
centre of the channel. The conventional logarithmic scale disguises this symmetry. 

Of the 21tk0j local minima of (4.9), (4.3), the absolute minimum corresponds to the 
solution with two zero-crossings and the correct phase. Knowing this, it is not 
necessary to find all the solutions at higher values of k,. Mean profiles at four values 
of k, are shown in figure 3 on a traditional constant-stress, semi-log plot. Notice that 
there is no extended logarithmic region, nor is there a velocity defect law in the 
interior (figure 4). The arrows on these and subsequent figures indicate the direction 
of increasing Reynolds number. 

The optimal I, spectrum can be approximated to very high accuracy by a cosine, 
Ik  = A cos (l?(k-:k,)) + C ,  where A ,  B, C are constant parameters. Two of the 
parameters are used to satisfy the constraints (4.3) in terms of the third, which is 
then chosen to minimize the Reynolds number. The error in the Reynolds number a t  
k, = 216 is 0.13% and decreases with increasing k,. This simple analytic 
approximation allows extension of the theory to large values of k,. 
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0 1 0 1 
k l  k, k l  kLl 

FIGURE 1. (a) Spectra of the smallest ( . )  and largest ( x  ) relative minima of R for k, = 20. ( b )  
Spectra of the two smallest relative minima of R for k, = 20, labelled . and - .  . marks the absolute 
minimum. 

30 

20 

Ut 

10 

0 1 2 

1% @+I 
FIGURE 2. The mean profiles of the 20 relative minima of R for k, = 20. 

0 1 2 
'I 3 I: 4 

log (z') 

FIGURE 3. Mean profiles for k, = 70, 100, 150, 216 (numerical) and k, = 300, 560, 900, 1198 
(approximate). Corresponding minima are R = 412, 603, 922, 1348; 1893, 3587, 5797, 7742. The 
arrow indicates the direction of increasing R. 
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0 1 
1 + z  

FIQURE 4. The minimum R velocity defect for k, = 70, 100, 150, 216. 

Figure 3 shows the asymptotic behaviour of the high-k, profiles. The end of the 
laminar boundary layer is at Uf z 4. A flat interior connects directly to the boundary 
layer. There is an asymptotically constant value of Ukax, which is less than 2% 
above the value defining the end of the boundary layer, U+ = 4. The scaled velocity 
difference, Ukax - Ui, is approaching zero in the interior. 

In  the limit as k, approaches infinity, 

lim R 2 (4.16f0.05)RT or lim R, < (0.240f0.003)R. (4.10) 
R,+m R+CC 

Busse’s nested vortex solution yields 

lim R 2 4.75R, or lim R, < 0.211R. (4.1 1) 
R,+CC R+W 

As anticipated, the upper bound on stress (and consequently on the Nusselt number) 
is above Busse’s because our optimal problem is less constrained. Yet it is clear that 
this upper-bound problem captures the same gross physics as the more detailed 
problem addressed by Busse. With this comparison in mind, other bounds are 
explored in t3j5 and 6. 

4.4. Discussion 

A common misconception is illustrated by the optimal mean velocity profiles for 
maximum Nusselt number. Millikan (1938) argued that Reynolds-number similarity 
and wall similarity must produce a logarithmic region in the mean velocity. It need 
not, however, be extensive or with the observed slope. There must be a logarithmic 
portion of the curves in figure 3 connecting the boundary layer to the interior, but 
it is vanishingly small. The necessary log region discussed by Millikan is not dynamic 
in nature. However, the scaled log region of realized turbulent shear flows results 
from a unique dynamic process. 

The maximum Nusselt-number profiles reflect only the boundary physics of 
observed turbulence. In  the interior they are ‘flat-topped’. This is because, for fixed 
Reynolds number, finite shear in the interior decreases the stress. Busse’s optimizing 
vector fields exhibit a constant finite shear which may be due to the approximate 
nature of the boundary-layer solutions. 
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5. The mean flows for maximum fluctuation dissipation rate and 
maximum dissipation rate ratio 

5.1. Assessing bounds by their mean velocity projiles 
Our search for an appropriate optimization principle is among products of the 
moments related by the dissipation rate integral, equation (2.5). An ‘appropriate ’ 
principle would be one that captured enough of the essential physics of turbulent 
flow in channels to give a bound with parametric dependence close to that observed 
in real flows. The Reynolds-number dependence of any such bound can only be the 
same as that of the data if the optimal and observed means have similar qualitative 
structure. 

The observed scaled mean velocity, U+, initially is independent of Reynolds 
number when plotted against log (( 1 + z )  R, = log z+. On this constant-stress, semi-log 
plot there is a laminar boundary layer, an extended linear region (the logarithmic 
law) and a parabolic interior. The logarithmic sublayer extends further on the plot 
as the Reynolds number increases but is of constant slope. The interior of the flow 
is described by the scaled velocity difference, (Umax-U)/U,, or the velocity defect. 
Away from the boundary, the velocity defect is independent of R and is a function 
of z only. This function of z is referred to as the velocity defect law. The quantitative 
structure of the observed mean is discussed in $6. (See figure 12.) 

Consider the upper bound on the total dissipation rate, R;R, presented in $4, The 
linear dependence of R, on R (equation (4.10)) is reflected in the flat-topped structure 
of the mean profile. One does not expect a logR dependence as in the data without 
a scaled, extended logarithmic section in the mean. The optimal profile associated 
with an ‘appropriate ’ principle should have a velocity defect law as well as a log law. 
Here and in $6 we use mean profiles to assess the relevance of each bound. 

5.2. The Euler-Lagrange equations 

Here one seeks upper bounds on the fluctuation dissipation rate 

R , 3 < m )  = R,2R-R,2<P2) 

and the dissipation rate ratio 

as functions of the Reynolds number. The Euler-Lagrange equations 
difficult than those for maximum total dissipation rate because <P2> is 

(5.1) 

(5.2) 

are more 
a quartic 

function of the Ik. The Euler-Lagrange equations are therefore cubicly nonlinear in 
the Ik. It is convenient to fix the Reynolds number and seek the extreme by varying 

In practice the Euler-Lagrange equations are derived for fixed Reynolds number 
and fixed k,. Optimization of k, is performed after these equations are solved. An 
advantage of this algorithm is that the Euler-Lagrange equations for maximum 
R 3 ( W )  and maximum I are the same. For fixed k, and fixed Reynolds number, 
<Pz) is minimized in each case. 

At different values of k,, the minimum of @’) is found from among the relative 
minima of the Euler-Lagrange equations. The maxima of R,~(@zD) and I, as 
functions of k,, are thus established. The absolute maxima are found by optimizing 
k,. Fortunately, in both cases, the optimal k, is a smooth, monotonically increasing 
function of Reynolds number. 

ko. 
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To express (p’)  in terms of the I k  one integrates (4.1), evaluating the constant of 
integration using a first-derivative boundary condition of (4.2). Squaring the result 
and integrating over the whole domain one finds 

where 6 is the Kronecker-delta function. 
The Lagrangian for minimum (p’) subject to the boundary condition constraints 

(4.3), the constraint on the smallest scale (4.5) and the Reynolds number given by 

(5.4) 

where A,, A,, A, are Lagrange multipliers. The associated Euler-Lagrange equations 
are 

together with (4.3), (4.4). These are ko + 4 equations for {Ik : k = 0, ko},  A,, A, and A,. 
The degree of this system can be reduced by a factor of two in exactly the same 
manner as described for the minimum-Reynolds-number problem. The symmetry 
condition (4.8) is again satisfied by all solutions and A, may be eliminated by 
subtracting pairs of equations. The resultant set of [ikoJ + 3 equations for the 
{ I k :  k = 0, [ikoJ},  A, and A, is solved using Newton’s method. 

5.3. The mean Jlow for maximum R,3(/3i~) 
Using the algorithm described in $5.2 one can find the ko and its optimal I k  spectrum 
that give the maximum R;(/~WW> for a given Reynolds number. Figure 5 displays the 
optimal mean profiles for three values of the Reynolds number on a constant-stress, 
semi-log plot. Although they have more structure than those associated with 
maximum total dissipation rate, they also lack the ingredients necessary for 
parametric dependence like that of the data. 

From figure 5 one sees that the laminar boundary layer ends a t  a value of Ut M 

3.5. The boundary layer gives way to an extended region that is approximately linear 
but whose slope decreases with increasing Reynolds number. The slope decreases 
such that the maximum value of U+ approaches a constant in the asymptotic limit. 
The asymptotic value of ULaX is about 25% above the end of the boundary layer, 
U+ z 3.5. Recall that  the mean profiles for maximum total dissipation rate also 
have a maximum value of U+. However, for maximum total dissipation rate U;,, is 
a t  most 2% above the end of the boundary region. 

The scaled mean profile for maximum fluctuation dissipation rate becomes flatter 
with increasing Reynolds number. Figure 6 shows that the velocity defect for 
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1% (z+) 

FIGURE 5. Maximum-R,S(P) profiles for R = 192, 369, 1107 (corresponding to k, = 31. 55, 
154). 
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Maximum-Rf(W) velocity defect for R = 192, 369, 1107 

maximum R , 3 ( m )  is approaching zero as R increases. A vanishing velocity defect 
is associated with a flat curve on the constant-stress, semi-log plot. Maximum 
fluctuation dissipation rate is similar to maximum total dissipation rate as the 
Reynolds number approaches infinity. 

5.4. The mean $ow for maximum I 
In Ierley & Malkus (1988) a local maximum of the fluctuation dissipation rate ratio, 
I ,  is found to be associated with a mean profile ‘near’ the data. The study is of a two- 
parameter space that includes the observed mean profile. This discovery suggests an 
investigation of the global maximum of I .  

It was found in $2.3 that an upper bound on I increases as Ri, while in realized 
flows I increases only as logR. Therefore one does not expect the mean profile for 
maximum I to  be like the observed mean, at least for high R. Rather, a mean profile 
that diverges from the data can be expected. The mean flow for maximum I is 
presented for illustration. 

To find maximum I as a function of Reynolds number, one again uses the 
algorithm described in $5.2. Contrary to  the profiles for the maxima of the 
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FIGURE 7. Maximum-I profiles for R = 192, 369, 1107 ( k ,  = 24, 37, 77). 
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369, 1107 

dissipation rates, the scaled mean profiles for maximum I become more parabolic 
with increasing Reynolds number. The constant-stress, semi-log plot (figure 7)  shows 
that the interior is a rapidly growing percentage of the scaled flow. The dominant 
parabolic interior is characterized by an increasing velocity defect (figure 8). One also 
sees, in figure 7, that the logarithmic region connecting the interior to the boundary 
layer is not extended as in the data. The mean flow for the global maximum of I is 
closer to Poiseuille flow than to turbulent flow. 

5.5. Discussion 
The mean flows for the maxima of R,2 R, R , 3 ( W )  and I are encouraging because they 
reveal the large variation in internal structure allowed by our formal bounding 
scheme. None of these bounds, however, leads to a log law or a velocity defect law 
as seen in the data. These bounds do not capture this important physics of turbulent 
flow in channels. Clearly, optimization principles 'in between ' these extremes should 
be explored. We therefore consider powers of the scaled stress multiplied by I ,  that 
is, quantities of the form (R,2/R2)nI. We show in $6  that only the mean flow for 
?z = 1 has both a logarithmic law and a velocity defect law. 
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6. The mean flow for maximum efficiency function &' 

Using the dissipation rate integral (3.2), the efficiency function is defined as 

6.1. The Euler-Lagrange equations 

Consider the upper bound on d as a function of Reynolds number. For fixed k, and 
R this problem has already been solved! The solution is that of minimum (b2) given 
by (5.3) subject to the boundary condition constraints (4.3), the constraint on the 
smallest scale (4.5) and the expression for R in terms of the I,, (4.4). In  fact this is 
true for the upper bound on any quantity of the form (R:)"I. (Maximizing d is 
equivalent to maximizing R: I for fixed Reynolds number.) The Lagrangian is given 
by (5.4) and the unsimplified form of the Euler-Lagrange equations by (5 .5) ,  (4.3) 
and (4.4). It is only necessary to find the optimal k,  for maximum 8. As was the case 
for maximum R ; ( W )  and maximum I ,  the optimal k, is a smooth, monotonically 
increasing function of R. 

6.2. The optimal solution 

Maximization of d as a function of Reynolds number results in the mean flow shown 
in figure 9. The mean exhibits swift convergence on the constant-stress, semi-log plot. 
The qualitative internal structure of the asymptotic form resembles that of the data. 
There is a well-defined logarithmic sublayer and a parabolic interior. The logarithmic 
layer has constant slope and extends further with increasing Reynolds number. 
Consistent with the extended log region, the interior has a rapidly converging 
velocity defect law (figure 10). As will be demonstrated in $6.4, most of the 
quantitative discrepancy between the maximum-& mean flow and the data is 
removed if a larger R, is used to define the smallest scale. Quantitative assessment 
of the maximum-& bound is postponed until then. 

6.3. Asymptotic approximation at high k, 
The optimal I ,  spectrum for maximum &' consists of a smooth interior and a 
boundary layer a t  each end. Figure 11 (a)  shows the spectrum for k, = 128 which is 
the optimal k,  for R = 1107. Figure 11 ( 6 )  is an enlarged plot of the spectral boundary 
layer near k = 0. The boundary layers are analogous to oscillations in a continuous 
variable. Each boundary layer is a series of jumps away from I ,  or Ik0. The jumps 
alternate in direction and decrease in magnitude, moving towards the interior. The 
first jump is seen to be 'positive': I ,  < I ,  and Iko < I,,-,. The relative magnitudes of 
the jumps approach zero as k, increases. For the first two jumps we define 6, = 

totic behaviour of the jumps at the ends of the I ,  spectrum accounts for the 
asymptotic behaviour of the logarithmic and interior regions in the mean velocity 
profile. 

An approximation for the Ik  spectrum at high k, can be constructed using the 
asymptotic values of 6, = 0.376 and 6, = -0.145 together with a cosine in the 
interior, I ,  = A cos (B(k - i k , ) )  + C ,  for 2 < k < k,  - 2. Two of the three parameters A ,  
B,  C are chosen to satisfy the boundary conditions (4.3) in terms of the third, which 
is then chosen to maximize & at a given k,. The amplitudes I ,  and I ,  are determined 
from I,, 6, and 6,. For fixed Reynolds number one must again optimize over k,. 

The approximate mean profiles for R = 1913, 2519, 3867 corresponding to k, = 

(Io-~I)/Io = ( ~ k o - l k o - l ) / ~ k o  and = (11-I2)/I1 = (~ko-i-Iko-2)/1ko-1. The asymp- 
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FIGURE 9. Maximum-6 profiles for R = 738, 922, 1107 (numerical) and R = 1913, 2519, 3867 
(approximate). k, = 89, 109, 128, 210, 270, 400. 

FIGURE 10. Maximum-& velocity defect law of both the numerical and approximate profiles. 
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FIGURE 11. (a) Maximum-6 spectrum for R = 1107. (5) Close-up of &-spectrum 'boundary- 
layer '. 
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210, 270, 400 were shown in figures 9 and 10 along with the numerical profiles for 
R = 738, 922, 1107 corresponding to k,  = 89, 109, 128. This approximation scheme 
captures the asymptotic features of the maximum-& mean profiles. It is therefore 
used to make quantitative comparisons with the data. 

6.4. Quantitative comparison with the data 
Using the asymptotic approximation to the optimal I, spectrum described in $6.3, 
the maximum-€ mean flow can be quantitatively compared to the observed mean 
flow. Recent channel flow experiments by Johansson & Alfredsson (1983) and 
Alfredsson & Johansson (1984) determine 5.2 as the slope of the logarithmic region in 
agreement with earlier data taken by Laufer (1950). Also consistent with Laufer, 
they find the velocity defect a t  0.75 of the half-channel width to be about 5. For 
Reynolds numbers near 25000 (based on the half-channel width) Johansson & 
Alfredsson (1983) report 5.0 as the value of the intercept while Laufer finds 5.5.  Here 
we use the more recent data for the constant-stress, scmi-log description, with the 
reservation that a higher value of the intercept was found in the earlier experiments. 

As can be seen in figures 9 and 10, the first upper bound on € predicts a logarithmic 
slope of 1.26, an intercept of 2.7 and a velocity defect of 1.1  at 0.75 of the half- 
channel width. It will now be demonstrated that most of the discrepancy can be 
attributed to the low value of the critical boundary Reynolds number R,. Recall that 
the Busse-Howard critical number R, = 39.69, corresponding to a critical boundary 
scale 2: = 6.3, was used as a first approximation. Notice that the beginning of the 
logarithmic region is at Z+ x 6 for this R,. 

Figure 12 shows the maximum-€ mean profile calculated using R, = 480 plotted 
along with the data of Johansson et al. (1983), both at Reynolds number 
approximately 25 000. The experimental profile has a more gradual transition from 
laminar boundary layer to logarithmic sublayer, a higher slope and a larger interior. 
The logarithmic slope of the maximum € profile is 4.6 and its intercept is 6.75. The 
velocity defect at 0.75 of the half-channel width is 4 in the maximum4 flow and 
about 5 in the data. 

Also shown in figure 12 is the maximum-€ mean for R, = 529 a t  R x 25000. Notice 
that it is entirely above the data, signifying that the corresponding € is no longcr an 
upper bound. Finally, the maximum-€ prGfiles for R, = 39.69 and R, = 480 are 
compared at the same stress (i.e. the same k,,). The upper bounds on € differ by a 
factor of about twelve. 

6.5. Adjacent integrals 
What is the result of maximizing (R;)"I for n other than 1 ? Our calculations suggest 
that a velocity defect law exists only for n = 1. It is seen below that for n > 1 the 
velocity defect decreases as R increases and for n < 1 the velocity defect increases as 
R increases. 

The results of maximizing RgI are given in figures 13 m d  14. The profiles are like 
those for maximum R , 3 ( W )  but have more interior a t  any given Reynolds number. 
Figure 13 indicates a decreasing logarithmic slope and a constant ULaX about 30%) 
above the value marking the end of the boundary region (compared to 25% for 
maximum R,~(/%w)). Figure 14 shows the decreasing velocity defect. Like the flow 
for maximum R , 3 ( W ) ,  the maximum-R!I flow is becoming flatter with increasing 
R. 

The mean flow for maximum RfI exhibits the transition between the scaled 
internal structure of the maximum-R;I flow and the parabolic nature of the 
maximum-I flow. In  figure 15 there appears to be a logarithmic region with a well- 
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FIGURE 12. Recent experimental data for Poiseuille channel flow, and d upper-bound profiles for 
different R,. A, data (Johansson et al. 1983), for R x 25600; -, maximum-& profile with R, = 
480 (k, = 230, R z 25600) ; --, maximum4 profile with R, = 529 (k, = 210, R FZ 25600) ; ---, 
maximum4 profile with R, = 39.69 (k, = 230, R x 2100). 
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FIGURE 13. Maximum-RiI profiles for R = 192, 369, 1107 (k, = 30, 53, 121). 

defined slope. As the Reynolds number increases, however, the logarithmic section 
does not increase in extent. Rather, the length of the logarithmic layer stays fixed, 
causing the parabolic interior to dominate U+ at high Reynolds numbers. Figure 16 
shows an increasing velocity defect, indicating again that the scaled flow is becoming 
more parabolic with increasing Reynolds number. 

In terms of the I ,  spectra, the boundary structure determines the interior features 
of the mean velocity profiles. The maximum stress spectra are completely smooth 
and asymptotically approach a cosine function everywhere. The spectra for 
maximum R ; ( W )  are also smooth but diverge from a simple cosine near I ,  and I ,  
as R increases. 

The class of moments {(R,2)nI,n > 0) have spectra with boundary layers. The 
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FIGURE 14. Maximum-RiZ velocity defect for R = 192, 369, 1107 
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FIGURE 15. Maximum-R!Z profiles for R = 192, 369, 1107 (k, = 28, 46, 96). 
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FIGURE 16. Maximum-& velocity defect for R = 192, 369, 1107 

magnitudes of the jumps characterizing the boundary layers decrease with increasing 
n. As the jumps decrease in size the interior of the mean also decreases. Figure 17 
compares the spectra for the maxima ofR,3(W), RgI, R,2I and @ I  at R = 922. Only 
a certain size of the boundary layer in the Ik spectrum leads to scaling as in the data. 
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FIQURE 17. Spectra for R = 922: x ,  maximum RT(/&TD)(~,, = 139); +, maximum R41 
(k, = 121); a, maximum B(k, = 109); 0, maximum Rfl(k,  = 96). 

6.6. Discussion 
One concludes that the efficiency function & is unique among functions of the form 
(R,2/R2)"I. Only maximum & results in an asymptotic velocity defect law. Only with 
a logarithmic law of a special nature does one find a velocity defect law. The 
logarithmic region must have a slope independent of Reynolds number. In  addition, 
it must increase in extent with increasing Reynolds number so as to keep the 
parabolic interior from dominating Ui. Both laws are part of the same inviscid 
equilibration process which is captured in the maximum-& mean flow. The extensive 
logarithmic laws of the data and of the maximum-& flow are dynamic in nature in 
contrast to the necessary logarithmic regions discussed by Millikan. Those limited 
logarithmic regions can be seen linking boundary and interior in all the upper bound 
mean flows. 

Of course there are other quantities that, in the limit of high Reynolds number, are 
asymptotically similar to 8. Examples are R+q5, I and R-3R73 c;, where q5f = R , 3 ( m )  
and cf = ((/hn~)/(/3~)~)(.a;m~)~. However, each of these alternatives, like d itself, 
contain only those low-order moments of the mean that appear in relative stability 
studies (Malkus & Veronis 1958). This apparent simplicity encourages us to seek a 
generalizable foundation for statistical stability from global arguments that assess 
the absolute stability of presumed solutions. 

7. Additional constraints on the smallest scale of motion effective in the 
transport of momentum 

7.1.  Recent studies of initial shear Jlow instability 
The results of $6.4 suggest that the difference between the upper bounds of d and the 
observations is largely due to the order of magnitude underestimate of the boundary 
Reynolds number R,. The success of the dissipation rate integral as a principal 
constraint to determine stability criteria for Taylor-Couette flow (Stuart 1958) and 
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convection (Malkus 1963) is in sharp contrast with the poor estimates of realized 
stability criteria when it is applied to  parallel shear flow (Joseph 1976). It would 
appear that, not only is the numerical estimate poor, but the dissipation rate integral 
fails to capture the central physical process a t  work in the destabilization of parallel 
flow. Numerical studies a t  low Reynolds number (Orszag & Patera 1980; Herbert 
1983) indicate the importance of a double mechanism, in which stable Orr- 
Sommerfeld vortex waves initiate local three-dimensional inertial instabilities, 
which in turn presumably reproduce the waves. Initial features of these inertial 
instabilities of elliptical vortices have been the subject of many recent papers 
(Pierrehumbert & Widnalll982 ; Pierrehumbert 1986 ; Bayly 1986 ; Craik & Criminale 
1986; Herbert 1988). The instability is broad-band and grows rapidly, quite 
suggestive of aspects of the observed ‘spots’ which initiate shear flow disorder. Also, 
the spatially local feedback mechanism needed to reproduce the vortex waves has 
been explored numerically (Henningson, Spalart & Kim 1987). Plausibly, a predictive 
theoretical framework for the complete symbiotic instability process will soon 
emerge. 

In  realized parallel shear flows the Reynolds number a t  which instability occurs 
depends upon the amplitude of those small disturbances that exist due to entry 
conditions or other sources of noise. For normally smooth flow, the observed critical 
Reynolds number is near 1000. In each of the studies mentioned in the last paragraph 
an initial or continuing vortex disturbance was assumed. How then can one 
determine a realistic R, for the very ‘noisy’ boundary layer of turbulent flow 1 In 
Ierley & Malkus (1988) an approach to this problem was outlined in which one 
determines an absolute stability criterion for an appropriate Orr-Sommerfeld wave. 
That method will be discussed and implemented in the last paragraphs of this 
section. 

The more direct approach to the determination of an improved Re, in the context 
of upper-bound theory, is the addition of further integral constraints beyond those 
used by Busse and Howard. Since the vortex wave is a central aspect of realized shear 
flow, it is plausible that the vorticity dissipation rate integral plays a special role in 
the small-scale processes in parallel flow, which it does not have in convection or 
curved flow. Below, these integrals are found and a first step is taken to incorporate 
their constraints on the optimum vector fields of the smallest scale. 

7.2. Components of the vorticity dissipation rate integral 
From (2.1), the full vorticity equation is written 

-- am v v w +  v * VW-8’ - vv = 0, 
at 

where 8’ = V x v .  As in $3, parallel, statistically steady shear flow is considered, with 

where as before the overbar is a spatial average in the (x,y)-plane parallel to the 
boundaries. However, here it is ma$hematically convenient to choose the mean flow 
to have the arbitrary direction 1 in the (x,y)-plane. Therefore, without loss of 
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generality, the integral for the square of the x-component of vorticity, 0 - i = w, is 
written 

(7.3) 

The two integrals, (7.3) and the similar equation for the y-component of vorticity, 
constitute additional constraints for parallel shear flow which may significantly 
reduce the quantitative error between upper-bound solutions and the observations. 
However, owing to the cubic nonlinear terms, no general analytical consequences of 
these constraints have yet been found. Because the optimal solutions of such 
variational statements usually are smooth in space and time, numerical methods are 
particularly promising. In  this section, a few special features of the vorticity 
constraint are investigated. 

7.3. Additional constraints on vortex wave $ow 
The optimal solutions constrained by the dissipation rate integral alone are 
streamwise vortices. If, in (7.3), i is  chosen to be the streamwise direction 1, one finds 
that the cubically nonlinear term and the terms representing interaction with the 
mean field all vanish for these streamwise solutions. Hence there is no vorticity 
source in the mean flow to sustain a steady stTeamwise vortex. However, for more 
generally directed vortices where a/ax = 0 but 1 =k i, one may write the x-component 
of vorticity, w, 3 V2$, from (7.1) as 

(7.4) 

If this nonlinear form of the Orr-Sommerfeld equation is multiplied by $ and 
integrated over the entire flow one obtains 

(7.5) 

This integral exhibits an aspect of Squire’s (1933) theorem, that cross-stream 
vortices have a maximum source in the mean flow and streamwise vortices none. Orr 
(1907) and MacCreadie (1931) have used (7.5) to determine a minimum value of 
Reynolds number which permitted such solutions compatible with the boundary 
conditions for Poiseuille flow. In those studies it was found that R, = 87.7, about 
twice the value found from the dissipation rate integral. The form of this optimal 
solution is a cross-stream, ‘cat’s-eye ’-like, vortex wave, of finite phase velocity. 
Numerical experiments (Orszag & Patera 1980) suggest that the travelling ‘local ’ 
inflexions which may occur in such a flow do not play a role in further instability. 

A sketch of the complete vector field for optimal 6, subject to (7.5), is given in 
figure 18. There, it  is presumed that the larger vortices approach the optimal solution 
permitted by the dissipation rate integral, retaining only the finite-amplitude 
stability requirements on the mean field inherent in (7.4) (Holm et al. 1985). The 
quantitative value of R, is still a factor of six too low, corresponding to an 
underestimate of z /6  in the scale of the boundary layer and the amplitude of internal 
features. 

Synge (1938) also used a form of (7.5), but his purpose was to estimate properties 
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FIGURE 18. Sketch of boundary region of the complete vector field for optimal 8, subject to 
constraint (7.5) on the smallest scale of motion. 

of the Orr-Sommerfeld linear eigenvalue problem (Lin 1955; Joseph 1968). If the 
asymptotic form of the OrrSommerfeld wave is used in (7.5) to estimate an R,, the 
result is quite close to the experimental value (Malkus 1956). A similar, but entirely 
numerical, result is reported in Ierley & Malkus (1988). It is clear from that work and 
the reformulation here that (7.5) is not really a vorticity constraint, but a component 
of the energy dissipation rate integral whose isolation is permitted by the assumption 
that the optimal solutions have the form of vortex waves. However, if (7.4) is 
multiplied by Vz@ and integrated, the vorticity dissipation rate integral (7.3) for 
axisymmetric vector fields is recaptured. Recalling that 1 defines the (arbitrary) 
streamwise direction in the (x, y)-plane, use of the horizontal average of the basic 
equation (2.1) establishes that 

Hence, (7.3) for axisymmetric flow can be written 

where the boundary terms, I B ,  on the left are the vorticity source. A minimum critical 
Reynolds number for a vector field satisfying previous constraints plus (7.7) has not 
yet been determined. 

These several restrictions on two-dimensional solutions may suggest why parallel 
shear flows have such delayed and complex instabilities. Certainly the first three- 
dimensional vector fields compatible with the full vorticity dissipation rate (7.3) will 
assist in understanding the underlying order of the realized complex flow. 

7.4. Absolute stability of Orr--Sommerfeld waves 
Numerical studies of the secondary instability of Orr-Sommerfeld vortex waves 
(Herbert 1983; Orszag & Patera 1983; Zaff 1987; Ierley & Malkus 1988) lead to the 
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conclusion that the cross-stream spatial scale of the growing inertial disturbances are 
as large and larger than the cross-stream scale of the finite-amplitude Orr- 
Sommerfeld wave. Hence, the Reynolds-number dependence of the smallest scale of 
motion (k,(R) in (4.5)) contributing to the transfer of momentum can be estimated 
from below by determining a critical boundary Reynolds number for stability of a 
vortex wave of primary cross-stream scale k, and arbitrary amplitude. A modified 
use of the dissipation rate integral as principal constraint permits the determination 
of a maximum value for this minimum Reynolds number, assuring stability for any 
vortex amplitude (in $7 of Ierley & Malkus 1988). In brief, the usual absolute 
stability function (Joseph 1976) is rewritten with an additional constraint as 

- 
( U . V 2 U + U  0 Vq5+A2(2)(rn-u’w‘)) 

( u  - u * V U )  Rabs = min, > (7.8) 

~ 

where, for the mean profile U ,  u’w’(z) is the normalized Reynolds stress of the 
marginal Orr-Sommerfeld wave, q5 is the effective pressure and the Lagrange 
multiplier A,@) is chosen so that the Reynolds stress of the eigenfunction u is of 
identical form to that of the vortex wave. An approximate numerical procedure is 
used to determine Rabs of (7.8), and is reported graphically in figure 9 of Ierley & 
Malkus (1988). Since the Orr-Sommerfeld waves near the boundary overlap into the 
adjacent logarithmic layer, it is found that Rabs is (weakly) dependent on the 
logarithmic slope of U. However, for slopes between one-half and twice the observed 
slope it is found in Ierley & Malkus (1988) that Rabs = 453 f 25. Hence in a turbulent 
boundary layer, buffeted by disturbances of all sizes, an estimate from below of the 
R, in (4.5) is Rabs. The sketch of the optimum vector field remains the same as that 
pictured in figure 18. However, the boundary vortex is now seen as an 
OrrSommerfeld wave on the verge of three dimensional instability. 

8. Upper-bound solutions as mean fields 
8.1. Limitations of the upper-bound models 

The previous section points a way to both qualitative and quantitative improvement 
of an upper-bound model of turbulent Poiseuille flow. A universal determination of 
which upper bound, if any, best emulates the realized statistical stability conditions 
has not been achieved. The function d of $6 may prove to have unique properties 
only for channel flow. Exploration of its generality based on relative stability 
arguments is in progress. 

With sufficient additional integral constraints, the vector fields optimizing d will 
have many statistical properties very close to the observations. Is such a smooth 
mechanistic model a satisfactory picture of turbulence 1 - hardly ! Turbulence implies 
disorder and non-periodic behaviour. Momentum transporting elements in realized 
shear flow are highly intermittent. The typical correlation of transporting fields is 
near 50%. Order and disorder strike a delicate balance in turbulent flow. In  this 
section several paths are suggested for using the upper-bound vector fields as new 
starting points for studies of time dependence in turbulence. 

8.2. Intermittency near the extreme fields 
The Euler-Lagrange equations (3.5) for upper-bound solutions have linear terms 
identical in form to those of the Navier-Stokes equations, (2.1). Also both sets of 
equations have identical first integrals relating mean gradients and mean momentum 
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transport, e.g. (3. I). Hence, the Navier-Stokes fluctuation equations for statistically 
steady turbulent shear flow may be rewritten symbolically as 

au 
- + Vp - VVU + G = G- (U * Vij+ ij - VU + u VU), at (8.1) 

where G represents the nonlinear terms of the Euler-Lagrange equation and the 
overbars indicate a horizontal average. Although the right-hand side of (8.1) is zero- 
average, the instantaneous value can be order one due to the observed intermittency 
of the flow. However, if the upper-bound solutions found when the right-hand side 
of (8.1) is set equal to zero are quantitatively realistic, then the presumption can be 
made that the nef effect of the right-hand terms is small. This permits a formal study 
of departures from the amplitude balance achieved by the a, modes of the extreme 
vector field. Such a codimension-m bifurcation problem plausibly is quite non- 
periodic. Berge’, Pomeau & Vidal (1987) assures us that if m = 3 or greater the 
characteristic finite-amplitude equilibration is through intermittent behaviour. 
Turbulent shear flow certainly is not a low-order dynamic system, but the extreme 
vector fields of the upper-bound theory can be treated as a finite-order dynamic 
system. Since one could explore the temporal interaction of a subset of the a, smooth 
fields (e.g. the five largest modes), numerical study seems quite promising. 
Decorrelation of the fields found in such a study could improve the deductive 
consequences of the upper-bound model. This address to  the time-dependent 
dynamics of the Iarge-scale flow might be formulated as a quantitative alternative to 
the continuing search for ‘ sub-grid scale ’ numerical algorithms. 

8.3. Closure near the extreme field 
The form of the right-hand side of (8.1) suggests that closure approximations, 
particularly the ‘direct-interaction approximation ’ (DIA) of Kraichnan (1955, 1959) 
might be employed to decorrelate the upper-bound extreme fields. A study by 
Herring (1964) is particularly relevant. Herring considered thermal convection at  
infinite Prandtl number, numerically solving first the mean field problem for steady 
cellular convection, and then applying DIA as a second step. He found that the 
decorrelations led to  a 10% reduction of the heat flux from that due to the steady 
cells. Chan (1971) also studied this problem, but sought an upper bound. He 
established that the maximum heat flux was identical to  the mean field heat flux at 
large Rayleigh number, both differing from the observations by a factor of 
approximately two. Hence, either the mean field problem or the Euler-Lagrange 
problem for maximum heat flux can be used in an extension to high Rayleigh 
numbers of Herring’s application of DIA. 

Unfortunately, solutions for the one-dimensional mean field problem for turbulent 
Poiseuille flow are far from the observed flow (Ierley & Malkus 1988). Three- 
dimensional instabilities on complicated two-dimensional wa,vy structures appear to 
dominate the equilibration of that flow. However, here solutions of a Euler-Lagrange 
equation such as (3.5) could serve as the ‘mean’ field in a study of the decorrelations 
resulting from a DIA-like closure. 

8.4. Towards order from the side of disorder 
A recent paper by Yakhot & Orszag (1986) estimates several shear flow properties 
with an ingenious use of a modified DIA and renormalization theory. Although DIA 
is oriented towards explanation of isotropic homogeneous disorder in a spectral 
domain, one can think of it as a quantitative stirring mechanism capable of 
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FIGURE 19. A ‘realistic’ I ,  spectrum, with the optimal Gibbs-like spikes removed at high k and 
with abrupt truncation replaced by an exponential tail. 
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FIGURE 20. The mean velocity profile deduced from the I ,  spectrum of figure 19 superimposed 
on the Alfredsson & Johansson (1984) data (A). 

enhancing local transport along a prescribed gradient of a fluid property. The 
example given in Yakhot & Orszag is momentum transport along a prescribed 
logarithmic mean velocity profile, whose amplitude is related to that transport. Their 
theory and its results do not bear upon the boundary region, the interior region, or 
the extent of the presumed logarithmic layer, but predict a slope for that logarithmic 
layer (the von KarmBn constant) close to the observations. Whether this speaks well 
for the presumed amplitude-transport relation, the modified DIA, or both acting 
together is yet to be determined. However, their methods could be applied to the 
right-hand terms in (8.1) to produce a modified statistical picture, estimating 
disordered aspects of an ordered upper-bound flow. 

8.5. Anticipated changes in the extreme Ik spectra 
The modifications of the upper-bound solutions partially implemented in $7 and 
discussed in $58.3, 8.4 above presumably will smooth abrupt space-time features 
of the extreme spectra. For example, it is unlikely that a sharp high-wavenumber 
cutoff or the nearby Gibbs-like feature of the I ,  extreme spectrum, figure 11 
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would survive. It is also plausible that the critical boundary Reynolds number would 
increase. To anticipate the consequence of such ‘rounding’, the tail of the extreme 
spectrum was arbitrarily modified as shown in figure 19. The Gibbs features are 
removed and the tail is a smooth exponential function of k. The resulting velocity 
profile is shown in figure 20 with the R, = 453 from $7, and compared with the data, 
figure 16. There appears to be little qualitative change in the velocity field, and such 
change as there is might move the profile nearer to the observations if the R, also 
were increased. This insensitivity to significant distortion of the extreme spectrum 
suggests that d is a robust statistical stability criterion for channel flow. 

Both authors received support for this study under grant ATM86-11727 of the 
National Science Foundation, for which we are most grateful. The computations 
were performed on the MIT Mathematics Department’s Sun system. 
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